
Voigt

N93-17527

Knowledge-Based Design of Generate-and-Patch

Problem Solvers that Solve Global Resource AssignmentProblems

Kerstin Voigt*

Computer Science Department, Rutgers University

New Brunswick, NJ 08903

voigt @cs.rutgers.edu

Abstract

We present MENDER, a knowledge based system
that implements software design techniques that
are specialized to automatically compile generate-
and-patch problem solvers that satisfy global re-
source assignments problems. We provide em-
pirical evidence of the superior performance of
generate-and patch over generate-and-test, even
with constrained generation, for a global con-
straint in the domain of "2D-floorplanning'. For
a second constraint in "2D-floorplanning" we
show that even when it is possible to incorpo-
rate the constraint into a constrained generator, a
generate-and-patch problem solver may satisfy the
constraint more rapidly. We also briefly summa-
rize how an extended version of our system applies
to a constraint in the domain of "multiprocessor
scheduling".

Introduction.

The MENDER project presented here is aimed at de-
veloping techniques to automatically compile generate-
and-patch problem solvers; these problem solvers effi-
ciently construct solutions that satisfy a conjunction
of interacting constraints. MENDER is a part of the
larger KBSDE effort towards automating knowledge-
based design of algorithms [Tong, 1991]. MENDER
builds on recent successes in automatically compiling
conjunctions of constraints on composite structures
into "constrained" generate-and-test problem solvers

"The research reported here was supported in part by
the National Science Foundation (NSF) under Grant Num-
ber IRI-9017121, in part by the Defense Advanced Research
Projects Agency (DAB_PA) under DAl_A-funded NASA
Grant NAG2-645, in part by DAR.PA under Contract Num-
ber N00014-85-K-0116, in part by NSF under Grant Num-
ber DMC-8610507, and in part by the Center for Computer
Aids to Industrial Productivity (CAIP), Rutgers Univer-
sity, with funds provided by the New Jersey Commission
on Science and Technology and by CAIP's industrial mere-
hers. The opinions expressed in this paper are those of the
author and do not reflect any policies, either expressed or
implied, of any granting agencies.

[Braudaway, 1991]. The constrained generator is the
result of incorporating into the generator constraints
that constrain local parts of the composite structure
("local constraints"). The conjunction of constraints
may feature other constraints which restrict all or
most parts of the artifact simultaneously ("global con-
straints"), a property that prevents their successful in-
corporation. These constraints could be satisfied by
placing testers after the constrained generator. How-
ever, the resulting generate-and-test problem solver
may still perform grossly inefficient.

The MENDER research capitalizes on the observa-
tion that once a complete composite artifact has been

generated, frequently a small number of local, well-
directed modifications ("patches") to the artifact suf-
fice to produce a solution to a constraint. We have
developed and implemented the MENDER compiler
which automatically builds such genera_e-and-pa$ch
problem solvers from an inefficient generate-and-test
problem solver. MENDER automatically compiles a
hillclimbing search component, called a "pateher", and
interfaces it with the generator. Hillclimbing patch-
ers are defined by the set of patching operator_ (i.e.
parameter value changes) and an evaluation/unction
that measures progress towards constraint satisfaction.
We show that cost-effective generate-and-patch prob-
lem solvers are possible with patchers that have the
following two properties. (1) Patching operators do
not result in violations of constraints that have been

satisfied through generation. (2) Patching searches
the space of parameter value changes in a constraint-
oriented fashion; i.e. when choosing the next move,
changes that promise higher degrees of constraint sat-
isfaction are prefered over those that yield no improve-
ment, or worsen the state.

The MENDER research has focused on the auto-

matic compilation of hillclimbing patchers that are spe-
cialized to satify global constraints that in some ab-
stract sense involve the assignment of "resources" to
"consumers". Resource assignment problems (RAPs)
are constraints that constrain the nature of assignment
between components of a composite "consumer struc-
ture" and a composite "resource structure". Our con-

141

vention is that the consumer structure corresponds to
the output of generate-and-test or generate-and-patch
problem solvers. The resource structure is typically
some other cons_a_ structure that is given as a part
of the specification of a RAP. RAPs are of interest
to us because they can successfully model significant
portions of important and well-known classes of prob-
lems (fioorplanning, scheduling, n-queens,...). Sec-
ondly, they share features that make them conducive
to the automatic compilation of efficient generate-and-
patch problem solvers.

In this paper, we report on MENDER's success in
automatically compiling, and interfacing with a con-
strained generator, a patcher that satisfies two global
constraints in the domain of "2D-floorplanning". The
first global constraint which we will refer to as "fill
house" constraint is informally defined as

Constraint 'frill house": The rooms in the
floorplan must cover the house area com-
pletely.

For this constraint we will briefly sketch the steps of
MENDER's compilation of a generate-and-patch algo-
rithm, and present the results of a preliminary perfor-
mance study on the resulting problem solver.

The second constraint - refered to as "no overlap" -
is defined as

Constraint "no overlap": Rooms in the floor-
plan do not overlap.

We will not sketch the compilation of a generate-and-
patch problem solver for _no overlap", but towards
the end of this paper we will present performance
data on the algorithm that MENDER constructed.
The _no overlap" constraint is interesting to us be-
cause it lies on the boundary between local and global
constraints. The RICK compiler [Brandaway, 1991]
has been able to partially incorporate _no overlap"
into a generator of floorplans by compiling filters that
forward propagate necessary conditions derived from
generated rooms to rooms that are to be generated
next. We compared the performances of the I_ICK-
compiled constrained generator with the MENDEl'-
compiled generate-and-patch algorithm for _no over-
lap". We will see that generate-and-patch consistently
performed better than constrained generation.

To show generality of MENDER's methods we will
also briefly describe how MENDER can automatically
compile a generate-and-patch problem solver for a con-
straint in the domain of "multiprocessor scheduling".

Classification-based compilation of

hillclimbing patchers.

In the past, we have already presented a classification-
based technique to construct hillclimbing patchers

[Voigt and Tong, 1989]. The here presented 5-step_
technique is an improvement over the previous one in
that a lattice-like taxomomy of abstract RAP schemas

Voigt

can be exploited in ways that eliminate costly match-
ing and theorem proving. The lattice formed by the
16 abstract RAPs is illustrated in Fig. 1. The least

: _ "_ : //_ i " _ i
i o • L. / / \ _ i o ------. j

Figure 1: Taxonomy of abstract RAP schemas.

constrained RAP schema, RAP1 (unconstrained, or
"True"), i8 found at the top of the lattice, the most
constrained RAP schema, RAP16 (bijection from con-
sumers to resources, and bijection from resources to
consumers) forms the bottom of the lattice. RAP2,
RAP3, RAP4, and RAP5 are the basic RAPs. All
RAPs on the remaining layers of the lattice are con-
structed from the basic ones by conjunction, as in-
dicated by downwards arrows (e.g. RAP6 _= RAP2
ARAP3). Thus, RAP16 is the conjunction of all four
basic RAPs. We will see later how explicit knowledge
of these relationships between the RAPs can be ex-
ploited in constructing efficient algorithms.

Step 1 - Classifying the constraint. In its first
step, MENDER asks the user to define the global con-
straint, e.g. _fill house", in a guided sequence of ques-
tions. The answers to these questions are rephrased
as a first-order logic representation of the concrete
constraint. In parallel to formulating the concrete
constraint MENDER parses a _azomomy of abstract
RAPs; when all questions have been answered the ab-
stract RAP class for the constraint has also been de-

termined. For example, the '_fill house" constraint may
be formulated as

Vp {point-of-rect(p,Hs) =:_
3rm [member(rm,Fp) Apoint-of-rect(p,rm)]}

"Each point p in the rectangular house (Ha)
is assigned to at least one room (rm) point in
the floorplan (Fp). _

and is automatically classified as an instance of the

abstract resource assignment problem RAP5, which is
represented by the abstract first-order logic sentence

142

below"

Vr { substrucg(r, Resources) ::_
3c [subs c Cc, Consumers}^ ssignCr,

"Each resource r in _he resource s_ruc_ure

(Resources) in assigned to a_ lcas_ one con-
sumer c in the consumer structure (Con-
sumers)."

MENDER pairs up the terms of the abstract RAP lan-
guage (e.g. subs¢ruc_, assign) with the concrete terms
of "fill house" as follows:

p oooooo.,,,.o*,,oloo,.,.ooo, oo°,°o..oo r

rm o°,o.o,o°.o,.°o°°..,°o,oo,°°,o°o°oo,,°° c

Hs Resources

Fp Consumers
point-of-rect(p,Hs) ... substruct(r, Resources)
member(rm,FP) ... subs_ruct(c, Consumers)
point-of-rect(p,r) azsign(r,c)

Step 2 - Deriving an evaluation function. As-
sociated with each abstract RAP is a generic evalu-
ation function which indicates in abstract terms how
to measure degrees of constraint satisfaction by quan-
tifying assignments between consumers and resources.
From RAP5 we retrieve the generic evaluation function
shown in Fig.2. It computes the number of resources
assigned to at least one consumer. MENDER special-
izes this abstract evaluation function into a concrete

evaluation function for "fill house" by instantiating the
abstract terms with the corresponding concrete terms.
The evaluation function for "fill house" then computes
the number of points p in house Hs that are also points
in some room rm in floorplan Fp (Fig.2).

Typically MENDER faces a scenario in which a
constrained generator exists which already guarantees
the satisfaction of several constraints. MENDEI_'s

task consists in constructing and interfacing with this
generator a patcher which will satisfy an additional
global constraint. When some or all of the constraints
that have been incorporated into the generator match
several of the basic RAP schemas (or conjunctions
thereof), then properties of the RAP lattice can be
exploited to derive an evaluation function that is more
efficient than the one in Fig. 2. For example, imag-
ine that a constrained generator exists that guarantees
that all rooms in the floorplan are located inside the
house (RAP2) and do not o_erlap (RAP4), and and
the house is fiat (RAP3) (i.e. one room point cannot
coincide with more than one house point). Then sat-
isfying "fill house" (RAP5) actually implies satisfying
the conjunction of these constraints. The conjunction
in turn is equivalent to RAP16. We know that RAP16,
that is, the conjunction of RAP2, RAP3, RAP4, and
RAP5, implies that the number of consumer substruc-
tures must be equal to the number of resource sub-
structures. I.e.

RAP2 A RAP3 ^ ILkP4 A RAP5

SIZE(C) = SIZE(R),

Voigt

Evaluation function for RAPE:

variables: r c out tenp;
constants: Consumers Resources

begin-proc
out <- 0

forall SUBSTRUCTS r in Resources

temp <- 0

forall SUBSTRUCTS c in Consumers

if ASSIGN(c,r) " true

then temp <- 1
exit-forall end-if

end-forall

out <- out + temp

end-forall

return out

end-proc

INSTANTIATE

Evaluation function for ''fill house'':

variables: p rm out temp;

constants: Fp Hs

begin-proc
out <- 0

forall POINT-OF-RECTp in Hs

temp <- O

forall MEMBER rm in Fp

if POINT-OF-RECT(p,rl) - true

then tenp <- 1
exit-forall end-if

end-forall

out <- out + tenp

end-forall

return out

end-proc

Figure 2: Generic evaluation function for RAP5; in-
stantiated for "fill house".

where C and R stand for Consumers and Resources

respectively. We also know that the following impli-
cations and equivalences hold for the basic RAPs (we
write C= and R= for "assigned consumers" and "as-
signed resources" respectively):

RAP2 ¢_ SIZE(C) >_SIZE(R=) ^SIZE(C) = SIZE(C=)

RAP3 =_SIZE(C=) > SIZE(R=)

RAP4 =_SIZE(C=) _<SIZE(R=)

RAP5 ¢:_ SIZE(C) < SIZE(R=) ^SIZE(R) = SIZE(R=)

It follows that

RAP2 A RAP3 A P_P4 A

SIZE(C) = SIZE(R) =_RAP5

Therefore, knowing that all rooms are inside the house
and do not overlap, and the house is flat,

SIZE(F p)P_"t=SIZE(H s)p°i"t =:,"fill-house"

143

Voigt

More EFFICIENT evaluation function

for ''fill house'':

variables: out,r

constants: Fp

begin-proc
out <- 0

forall r in Fp

out <- out + reef-length(r) * rect-eidth(r)

end-forall

return out

end-proc

Figure 3: More efficient evaluation function for "fill
house".

That is, the objective of "fill house" coincides with
the number o� house point8 being equal to _he number
o� all room points in the floor-plan. Progress towards

satisfying "fill house" can be measured by the total
number of room points in the floorplan. MENDER
searches its knowledge base of data types and finds
that the number of points of an object of type rectangle
can be efficiently computed as the product of rectangle
length and rectangle width. By adopting this measure
as the revised evMuation function for "fill house" (see
Fig. 3) MENDER constructs an evaluation function
that computes significantly faster the original one (Fig.
2).

Step 3 - Characterizing "improving opera-
tors", Next MENDER continues by working with
the less efficient evaluation function in Fig. 2. Two
additional pieces of information are associated with a
generic evaluation function: the direction of change to-
wards greater satisfaction of the constraint("increase"
or "decrease"), and a characterization of events that
can cause the desired change. For tLAP5 the direc-
tion of positive change is "increase" (i.e. higher value
of the evaluation function indicates greater constraint
satisfaction), and the event to cause such change is "/n-
crease the frequency of 'ASSIGN(c,r) = true' ". For
"fill house" this translates into the information that the

value of the evaluation function can be increased (im-
proved) if the floorplan is modified such that more fre-
quently 'point-of-rectangle(p,rm) = true'. MENDER
regresses this event through the definitions of relevant
datatypes and predicates in its knowledge base, and
thereby determines that only increases of the "length"
and "width" parameters of the rooms in the floorpIan
can - in one application - lead to greater "flling _ of
the house. These parameter changes are termed "im-
proving operators" to distinguish them from parameter
value changes (e.g. changes in room location, "shrink-
ing" of rooms) that are guaranteed not to contribute
towards greater constraint satisfaction.

Step 4 - Instantiating the "patcher shell".
The patcher shell is a piece of code that realizes a

basic hillclimbing strategy (with backtracking). It is
rendered operational for a given global constraint by
instantiating it with the concrete evaluation function
and "improving operator" information. The patcher
shell provides the choice of two types of "greedy" con-
trol strategies: "greedy", and "greedy and strictly as-
cending". These controls differ in how and to what
extent the evaluation function and "improving oper-
ator" information are employed. Both controls use
the evaluation function to order the applicable patch-
ing operators at each choice point in decreasing or-
der of progress towards satisfying the constraint. The
"greedy and strictly ascending" control restricts the set
of patching operators to only those that are "improv-
ing _'. For example, to patch for "fill house" possible
parameter value changes are limited to increased values
in the "length" and "width" parameters of rooms. In
"greedy" patching, which operates with the full set of
applicable operators (e.g. all changes of room "length"
,"width", and changes of the =x-coordinate" and "y-
coordinate" of room location points) knowledge of "im-
proving operators" can help to significantly reduce the
cost of evaluating the promise of legal "next" operators
at each decision point. Among the set of options only
"improving" operators are evaluated in detail, while
the closer examination of the remaining operators (a
priori known to make no or negative progress) is sus-
pended until after all prefered operators have failed to
provide a solution. We found empirically that for up
to 80% of all applicable operations the evaluation func-

tion value was never computed, reducing the cost/node
considerably.

Step 5 - Building "generate-and-patch".
MENDER interfaces a constrained generator with a
patcher such that constraints satisfied by generation
will not be violated during patching. This is accom-
plished by making the patcher adhere to the same
restrictions that are forced upon generation when in-
corporating the local constraints. While these restric-
tions limit the set of patching operators, chances are
that sufficient options remain to produce solutions. It
is also exactly because of these restrictions that the
patcher search space is typically smaller than the orig-
inal generation space, allowing faster problem solving
by patching than backtracking and regenerating.

Experimental results.

We present the results of our preliminary empirical
studies of the performances of the generate-and-patch
problem solvers that MENDER constructed for the
"fill house" and =no overlap" constraints.

"Fill house". In the generate-and-patch prob-
lem solver for "fill house" the (tLICK-compiled) con-
strained generator guarantees that all generator out-
puts are floorplans with nonoverlapping rectangu-
lar rooms no smaller than 5x 5 units, and are lo-

144

cated insidea given house area and adjacent to at
least one house wall. We compare performances

ofconstrained generate-and-test(g_t), generate-and-

patch with "greedy" controlofpatching (g_p:greedy),

generate-and-patch with "greedy and strictlyascend-

ing" (g&p:gr-asc)control.As added controlcondition,
we alsotestgenerate-and-patchwithout any informed

controlstrategy (g_p:default).Our performance mea-
sure isthe "repaireffort"expended by each problem
solverafter the firstcandidate has been generated.I

"Repair effort"for generation ismeasured innumber

of nodes (alternativeselectionsof parameter values)

expanded through backtracking and regeneration.Re-
pairby patching ismeasured innumber ofnodes (mod-

ificationsof parameter values) expanded within the

patcher space.

We ran each problem solver20 times for floorplans
with 1,2, 3,and 4 rooms. The constrainedgenerator

produced floorplansin random order. The house di-
mensions were chosen relativeto the number ofrooms,

such that the smallestlegalfloorplanwould cover --.

30% of the house area. Our results,averaged over

the 20 runs, are plotted in Fig.4. Overall we find

.v_sSe n=nl_ of'_r nodes

le_3

5 .I
s

wS

2 .m*

t*

//

/eS

et _t

....--

J
J J

J
/

/
e_

J

et
,|

/
/

,t

/"

....-i Jo

1.00 ZOO 3.00 4.00

I_mbmr of m

Figure 4: "Repair effort" of generate-and-test and
generate-and-patch for "fill house" (y-axis scaled loga-
rithmically).

that alltypes of generate-and-patchwere consistently

1Generating the first candidate has a ftxed cost shared
by all problem solvers, and is therefore ignored in our study
of comparative cost.

Voigt

better than constrainedgenerate-and-testwhich con-
firms our intuitionsand observations.The plotsshow

that generate-and-patch with "greedy" control very
significantlyoutperformed constrained generate-and-
test.E.g.,for 4-room floorplan10,000generations2 did

not sufficeto satisfy"fillhouse". In contrast,patch-

ing achieved repairin only 16 patcher nodes. Not

surprisingis the inefficientperformance of generate-
and-patch without control (g&p:def). Generate-and-

patch with "greedy and strictlyascending" controlwas
second best but notably lessefficientthan "greedy".

In the past,we had shown that this type of problem
solvercan perform much better,when patching isin-
terleavedwith "block-preventing"moves that circum-

navigatedead-ends [Voigtand Tong, 1989].Naturally,

thisfacilityinvolvessome additionalcost which judg-

ing from the good performance of "greedy" was not

warranted by our examples. At thispoint, we with-
hold judgment on the relativemerits of "greedy" ver-

sus "greedy and strictlyascending patching". Which

problem solverislikelyto be more cost-effectiveseems

to depend on the domain and the constraint. We

need to study MENDER-compiled generate-and-patch

problem solversforlargernumbers ofmore diversecon-
straintsto obtain more conclusiveresults.

"No overlap". In a further study, we compare
the performance of the MENDER-compiled greedy

generate-and-patch problem solver (g_p:greedy) to
satisfy"no overlap" with the RICK-compiled con-

strained generator (constr-g)which outputs nonover-

lapping floorplans.We measure and compare the per-
forrnancesof both types of problem solversin num-

ber of nodes expanded in the respectivegeneration

and patching spaces. We ran generate-and-patch and

constrainedgeneration20 times for 2 to 5 rooms and
a 15x15 house. Note that constraintincorporation

by RICK does not prescribea particular(constraint-

dependent) generationorder. Therefore,performance
data were collectedwith a randomized generation or-

der in the constrained generator. The results,aver-

aged over 20 runs,are plottedin Fig. 5. We findthat
generate-and-patch findssolutionsconsiderablyfaster

than the constrainedgenerator.These data show that

the utilityof generate-and-patch algorithmsisnot re-
strictedto constraintswhose extremely high degree of

globalityrendersthe compilationofa constrainedgen-
eratorinfeasibleor undesirable.Even when itispos-

sibleto compile a constrainedgenerator,a generate-
and-patch algorithm may be a viable,and potentially

preferablealternative.

Applying MENDER to other domains.

At the presenttime allproblem solversthat MENDER

has automatically constructed solve problems in the

domain of2D-floorplanning.However, we have worked

2Although the plot shows data point 10,000, patching
was cut off at 10,000 nodes without solutions.

145

n_-_ of nodos

$

3

2

1.5

I©÷03

7

5

IJ

3

J J
1_ _fj r

ZOO 3.OCt

/
/

/

lJ
J

4.00 5.00

Figure 5: Satisfying "no overlap" by constrained gen-
eration vs. generate-and-greedy-patch (15x15 house)
(y-axls scaled logarithmically).

out paper traces on how an extended version of our
system will be able to compile generate-and-patch
problem solvers for constraints in a variety of other
domains (e.g. n-queens, graph-coloring, scheduling,
VLSLdesign) [Voigt, 1991]. Here we will briefly sum-
marize how MENDER could be applied to a multi-
processor scheduling problem taken from the listing of
NP-complete problems in [Garey and Johnston, 1979]:

Multiprocessor Scheduling:

"INSTANCE: Set T of tasks, number m E Z + of
processors, length l(t) E Z + for each t E T, and a
deadline D E Z +.

QUESTION: Is there a m-processor schedule for
T that meets the overall deadline D, i.e., a func-
tion _, : T --* Z+ such that, for all u _ O, the
number of tasks t E T for which o(t) __ u <
o(t) + I(t) is no more than _rt and such that, for
all t E T, tr(t) + l(t) _<D?"

Suppose that this problem is presented to MENDER
in terms of a consumer structure Schedule which is a
set of tasks with known lengths and a resource struc-
ture TimeTable which is a list of consecutive time slots.
The latest time slot corresponds to the deadline D. As-
sume that a generator produces schedules by assigning
starting times to each task. To satisfy scheduling Con-
straint a schedule must satisfy the following conjunc-

Voigt

tion of subconstraints: (1) a task in Schedule must be
assigned a starting time that corresponds to a time slot
in TimeTable, and (2) a time slot in TimeTable must
not be assigned to more than m tasks. (Note that we
model the m processors as a capacity/limitation on each
time slot.)

MENDER would recognize this constraint as an in-
stance of RAP7 which is a conjunction of RAP2 and
RAP4 + where tLkP4 + is a generalization of the orig-
inal P_P4. RAP4 requires that each resource is as-
signed to at most 1 consumer, tLkP4 + requires that
each resource be assigned to at most m consumers
for m > 2. Based on this classification of the con-
straint, MENDER would derive as an evaluation func-
tion a measure that combines the number of all tasks in
Schedule assigned to time slots within TimeTable with
the sum of how many times exceeding m each time
slot has been assigned to some task. Given this eval-
uation function, MENDER determines that assigning
earlier star_ing times is most likely to improve a sched-
ule with respect to the evaluation function. Therefore,
generate-and-patch with greedy patching would prefer
scheduling tasks earlier over rescheduling tasks to later
starting times.

Related research.

KIDS [Smith, 1991] and STRATA [Lowry, 1991] are
two algorithm design systems that are closely related
to MENDER. Both systems design search algorithms
but differ from MENDER in the assumptions made
about the initial problem specification, and in the way
domain knowledge and algorithm knowledge are used
to construct search operators and control facilities.

KIDS automatically constructs search algorithms,
e.g. a global search algorithm, by retrieving from
a library of abstract global search theories a theory
that applies to the datatypes mentioned by the con-
straint. The abstract theory is then specialized into a
global search algorithm through a series of program-
transformations. Selection of global search theories
and transformation steps is done in interaction with
the user. KIDS enables the search algorithm to make
use of problem-specific information by deriving neces-
sary filters that prune those parts of the search space
that are void of solutions. The derivation of necessary
filters is accomplished by a deductive in.ference compo-
nent.

KIDS is a much larger and more general algorithm
design system than MENDER. KIDS works with a
larger and more varied library of abstract search the-
ories, enabling it to not only construct global search
algorithms, but local search and divide-and-conquer
problem solvers as well. MENDER is restricted to
compiling local search algorithms, and does so only
for constraints that fall into one of 16 abstract ILkP
categories. However, precisely because of its restric-
tions, MENDER has several advantages over KIDS.
MENDER is fully automatic whereas KIDS requires

146

that the user make important design decisions.Be-
cause MENDER's constraintknowledge isrestricted

to RAPs for which generic evaluation functions are

known, the cost of compiling searchcontrolfacilities,

i.e.the cost ofretrievingand instantiatingan evalua-

tionfunctionschema, isrelativelycheap in MENDER.
The derivationof necessary filtersby KIDS's deduc-

tive inference component can be very costly. For

constraintsthat are as globalas "fillhouse", we ex-
pect KIDS to have great difficultyinderivinga filter.

MENDER, however, can easilyand cheaply providean
evaluationfunction to guide the search.

The STRATA system by Lowry has been integrated
intoKIDS as the component which deriveslocalsearch

problem solvers. STRATA and MENDER are sim-

ilarin that they derive search operators ("patching

operators" in MENDER; "neighbourhood structures"

in STRATA) from datatypes mentioned in the con-
straintformulation and a cost fnnction whose value

localsearch strivesto optimize. A major difference

between both systems liesin the nature of the ini-
tialproblem formulation.STRATA acceptsoptimiza-

tion problems that listoutput conditionsand a cost

functionas two separate and independent components
of the problem formulation. In principle,any set of

output conditionscould be paired with any costfunc-

tion. MENDER's styleof problem formulation offers
lessflexibility,in that the the output conditionsand

cost function ("evaluationfunction")are interdepen-

dent. In MENDER, a constraintispresented only in
the form ofoutput conditions.A suitablecostfunction

isthen derivedfrom the output conditions.As incom-

parison with KIDS, MENDER trades flexibilityand
varietyofproblem classesfora more directand low coat

algorithm designprocess.Since MENDER's costfunc-

tionsare instancesof genericcost functions,the type
ofcost function isknown to the system. Knowing the

nature of the cost function a prioriallowsus to equip

MENDER with a regressionmechanism that isspecial-
ized- and thereforecost-effective-in tracingdesirable

cost function changes back to localmodificationsin
the solutionstructure.For the similartask,STRATA

needs to use the much more generaland costlydeduc-

tiveinferencecomponent of KIDS.

MENDER-compiled patchersadopt a repairstrategy

that issimilarto the one recentlyexamined by Minton
[Minton etaL, 1990]. Minton demonstrates how a Io-

caisearch problem solvercontrolledby a simple =min-

imize conflicts"heuristiccan solvelarge-scaleschedul-

ing and very largen-queens problems inapproximately
lineartime with respect to problem size. Socic and

Gu [Sosicand Gu, 1990] reported comparable perfor-

mances forsimilarlocalsearchproblem solversforvery
large n-queens problems. However, to automate the

constructionof efficientproblem solversthat can take

advantage ofthe _minimize conflicts"heuristic,a con-

strainthas to lend itselfto an easy quantificationin
terms of number of _confiicts".The notion of _con-

Voigt

flict"associatedwith a given constraintmay or may
not be obviousfrom the formulationof the constraint.

MENDER solvesboth these problems for constraints

of type RAP. MENDER reexpressesRAP constraints
interms that allowthe conceptualizationofa notionof

%onflict"that captures the specificsofthe constraint

and isamenable to easy quantification.

Future research.

In the near future,we plan to extend MENDER to

handle global constraintsin a variety of other do-

mains, e.g.scheduling,VLSI-design, n-queens, graph-

coloring,satisfiability.We alsointend to explorepos-
sibilitiesof applying MENDER's classification-based

approach to automatically compiling ":look-ahead"fa-
cilitieswhich detect and circumnavigate unpatchable

statesearlyon.

Acknowledgements.

I am gratefulto Chris Tong for his insightsand guid-
ance. For valuable comments and suggestionsI also

thank Lou Steinberg,Don Smith and Tom Ellman.
Further thanks toWes Braudaway for the constrained

generatorsconstructedwith his RICK compiler.

References

Braudaway, W.K. 1991. Knowledge Compilation for
Incorporating Constraints. Ph.D. Dissertation, Rut-

gers University.
Garey, M.R. and Johnston, D.S. 1979. Computers

and Intractabilit!/. A Guide _o the Theory of NP-
Completeness. Freeman.

Lowry, M.R. 1991. Automating the Design of Lo-
cal Search Algorithms. In Lowry, M.R. and McCart-
ney, R.D., editors 1991, Automating Software Design.
Menlo Park: AAAI Press.

Minton, S.; Johnston, M.D.; Philips, A.B.; and Laird,
P. 1990. Solving Large-ScaleConstraint Satisfaction

and Scheduling Problems Using a HeuristicRepair
Method. In Proceedings of AAAI-90.

Smith, D.R. 1991. KIDS - A Knowledge-Based Soft-
ware Development System. In Lowry, M.R. and Mc-
Cartney, R.D., editors 1991, Automating Software
Design. Menlo Park: AAAI Press.

Sosic, R. and Gu, J. 1990. A Polynomial-Time Algo-
rithm for the N-Queens Problem. SIGART Bulletin
1(3).

Tong, C. 1991. A Divide-and-Conquer Approach to
Knowledge Compilation. In Lowry, M.R. and Mc-

Cartney, R.D., editors 1991, Automating Software
Design. Menlo Park: AAAI Press.

Voigt, K. and Tong, C. 1989. Automating the Con-
struction of Patchers that Satisfy Global Constraints.
In Proceedings of IJCAI-89, Detroit.

Voigt, K. 1991. Working Notes. Computer Science
Department, Rutgers University.

147

